Reactive Blue 19 (RB19) removal from synthetic textile wastewater was investigated by using a CoFe2O4@methylcellulose (MC) activated with peroxymonosulfate (PMS) and the ultrasound process. CoFe2O4@MC as a new magnetic nano-biocomposite was prepared using a convenient and rapid microwave-assisted technique in presence of MC as a green biopolymer, and characterized by FESEM, EDS, Mapping, TEM, FTIR, XRD, TGA, VSM, and BET techniques. Then, the effective parameters including pH (4–10), reaction time (0–30 min), CoFe2O4@MC (0.2–1 g/L), and PMS concentration (0.5–10 mM) in the sonocatalytic degradation of RB19 were investigated. The maximum removal efficiency of RB19 was achieved as 97% for synthetic wastewater under the optimal conditions of pH 4, CoFe2O4@MC dosage (0.6 g/L), reaction time = 30 min, and PMS (5 mM) in the presence of ultrasonic waves (60 kHz) at the ambient room temperature of 22 °C. The CoFe2O4@MC catalyst was simply isolated using a magnet and recycled with no remarkable loss of catalytic activity following usage in four runs. The results showed that the CoFe2O4@MC sonocatalysis process is practical, and effective for degrading complex and resistant dyes such as RB19.