ObjectiveChronic exposure to cold temperature is known to elevate blood pressure, leading to a condition known as cold-induced hypertension (CIH). Our previous research suggested correlations between alterations in gut microbiota, decrease in butyrate level, and the onset and progression of CIH. However, the role of butyrate in CIH and the underlying mechanisms need further investigation. MethodsWe exposed Specific Pathogen Free (SPF) rats to continuous cold temperature (4 ± 1 °C) for 6 weeks to establish a CIH rat model. Rats were divided into different groups by dose and duration, and the rats under cold were administered with butyrate (0.5 or 1 g/kg/day) daily. We assessed hypertension-associated phenotypes, pathological morphological changes, and endocrine-related phenotypes of brown adipose tissue (BAT). The effects of butyrate on gut microbiota and intestinal content metabolism were evaluated by 16s RNA sequencing and non-targeted metabolomics, respectively. ResultsThe systolic blood pressure (SBP) of rats exposed to cold after supplemented with butyrate were significantly lower than that of the Cold group. Butyrate may increase the species, abundance, and diversity of gut microbiota in rats. Specifically, butyrate intervention enriched beneficial bacterial genera, such as Lactobacillaceae, and decreased the levels of harmful bacteria genera, such as Actinobacteriota and Erysipeiotrichaceae. Cold exposure significantly increased BAT cells and the number of mitochondria. After butyrate supplementation, the levels of peroxisome proliferator-activated receptor gamma coactivator 1a and fibroblast growth factor 21 in BAT were significantly elevated (P < 0.05), and the volume and number of lipid droplets increased. The levels of ANG II and high-density lipoprotein were elevated in the Cold group but decreased after butyrate supplementation. ConclusionButyrate may attenuate blood pressure in CIH by promoting the growth of beneficial bacteria and the secretion of beneficial derived factors produced by BAT, thus alleviating the elevation of blood pressure induced by cold. This study demonstrates the anti-hypertensive effects of butyrate and its potential therapeutic mechanisms, offering novel insights to the prevention and treatment of CIH in populations living or working in cold environments.