BackgroundPatient satisfaction is a unique and important measure of success after total hip arthroplasty (THA). Our study aimed to evaluate the use of machine learning (ML) algorithms to predict patient satisfaction after THA.MethodsProspectively collected data of 1508 primary THAs performed between 2006 and 2018 were extracted from our joint replacement registry and split into training (80%) and test (20%) sets. Supervised ML algorithms (Random Forest, Extreme Gradient Boosting, Support Vector Machines, Logistic LASSO) were developed with the training set, using patient demographics, comorbidities and preoperative patient reported outcome measures (PROMs) (Short Form-36 [SF-36], physical component summary [PCS] and mental component summary [MCS], Western Ontario and McMaster’s Universities Osteoarthritis Index [WOMAC] and Oxford Hip Score [OHS]) to predict patient satisfaction at 2 years postoperatively. Predictive performance was evaluated using the independent test set.ResultsPreoperative models demonstrated fair discriminative ability in predicting patient satisfaction, with the LASSO model achieving a maximum AUC of 0.76. Permutation importance revealed that the most important predictors of dissatisfaction were (1) patient’s age, (2) preoperative WOMAC, (3) number of comorbidities, (4) preoperative MCS, (5) previous lumbar spine surgery, and (6) low BMI (< 18.5).ConclusionMachine learning algorithms demonstrated fair discriminative ability in predicting patient satisfaction after THA. We have identified modifiable and non-modifiable predictors of postoperative satisfaction which could enhance preoperative counselling and improve health optimization prior to THA.
Read full abstract