We theoretically investigate the feasibility of constructing compact and highly efficient all-optical diodes (AODs) based on light tunneling mechanism in heterostructures. Due to light tunneling behaviors in heterostructures with one-dimensional photonic crystals (1D PC) and lossy metallic film, not only very large nonlinear permittivity of metal can be utilized sufficiently but also the structures with strongly nonreciprocal electric field distributions can be constructed. Finally we design a composite structure consisting of 1D PC-metal heterostructures to achieve the optimal unidirectional light transmission with 0.984 transmission contrasts, 42% transmission and 0.93 GW/cm(2) operating light power at working wavelength 557.2nm.