The corpus luteum (CL) is an ephemeral endocrine organ. During its lifespan, it undergoes a period of extremely rapid growth that involves hypertrophy, proliferation and differentiation of the steroidogenic cells, as well as extensive angiogenesis. The growth phase is followed by a period in which remodelling of the tissue ceases, but it engages in unparalleled production of steroids, resulting in extraordinarily high metabolic activity within the tissue. It is during this stage that a critical juncture occurs. In the non-fertile cycle, uterine release of prostaglandin (PG)F(2α) initiates a cascade of events that result in rapid loss of steroidogenesis and destruction of the luteal tissue. Alternatively, if a viable embryo is present, signals are produced that result in rescue of the CL. This review article summarizes the major concepts related to the fate of the CL, with particular focus on recent insights into the mechanisms associated with the ability of PGF(2α) to bring about complete luteolysis. It has become clear that the achievement of luteolysis depends on repeated exposure to PGF(2α) and involves coordinated actions of heterogeneous cell types within the CL. Together, these components of the process bring about not only the loss in progesterone production, but also the rapid demise of the structure itself.
Read full abstract