Special Section: The Value and Future of Petroleum Engineering In the JPT issue celebrating SPE’s 50th anniversary, John C. Calhoun addressed how distinctive petroleum engineering is from other engineering disciplines: “During the past several decades, consolidation and integration of four major elements of petroleum engineering have occupied the profession. The following lists these elements. Extending our capabilities to gain access to, to couple with, and to operate within a greater portion of the subsurface environment (e.g., offshore locations, over-pressured environments, marginal reservoirs, horizontal drilling, complex flow systems, acidizing, and hydrofracturing). Developing methods for detailed characterization of subsurface formations, their fluids, and their surroundings (e.g., geostatistics, well logging, indirect geophysical measurements, well-performance analysis, and basin analysis). Recovering a greater proportion of the petroleum within reservoirs that have been accessed and understanding the transfer operations that accompany the recovery (e.g., a broadened spectrum of injected fluids and fluid additives, phased fluid injection programs, extensions of reservoir flow paths, in-field drilling, and horizontal wellbores). Systematizing technological management and coupling it with business decision making (e.g., history matching, risk analysis, reservoir management, software packages, and team projects).”1 Since that issue a little over a decade ago, petroleum engineering feats have expanded on the past and made towering breakthroughs in resource recovery. Those breakthroughs came about with added emphasis on decision and risk analysis as an essential project element; a step up from what was referred to as a coupling with business. Reviewing our technology history thus requires highlighting the tangible breakthroughs with the necessary intangibles that enabled faster transformations with commercial success (Fig. 1). Tangible Breakthroughs Arguably the biggest breakthrough during the past 50 years was Mitchell Energy’s approach to making shale production viable. Well stimulation began in the mid-1800s with torpedoes used on Pennsylvania wells. It was the subject of the first JPT technology article published in 1949, “A Hydraulic Process for Increasing the Productivity of Wells,” by J.B. Clark.2 Mitchell’s approach was not so destructive as the torpedo approach and packed more energy per square nanometer to tip the scales of global supply sourcing. By leveraging the refinement of existing technologies, such as slickwater fracturing adopted from Union Pacific Resources Group, Mitchell’s engineering ushered in new sources of economic reserves, rebalancing top global supplier positions between North America and the Middle East. An equal contributor to shale success was horizontal drilling. While slant drilling was derisive in the 1920s, legal and more reliable horizontal drilling evolved with major advancement in the 1970s through the use of mud motors, “bent subs,” whipstocks, and measurement-while-drilling tools. The petroleum engineer’s ability to reduce trips, monitor, and course correct through tight lateral intervals advanced getting wells on production sooner, with lowered risks and better financial results. Direct public benefit from results such as this are exemplified by the number of sovereign wealth funds established using oil and gas proceeds: the Alaska Permanent Fund, Texas Permanent University Fund, and funds in Norway and the Middle East, to name a few.
Read full abstract