Expression of heat shock proteins 47 and 70 in the peritoneum of patients on continuous ambulatory peritoneal dialysis.BackgroundPeritoneal sclerosis, characterized by collagen accumulation, is a serious complication in continuous ambulatory peritoneal dialysis (CAPD) therapy. Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperon and is closely associated with collagen synthesis.MethodsWe determined the expression of HSP47 and HSP70 (nonspecific for collagen synthesis) by immunohistochemistry in peritoneal tissues of patients on CAPD. The tissue for collagen III, α-smooth muscle actin (α-SMA), and CD68 (a marker for macrophages) were also stained. Thirty-two peritoneal samples were divided into three groups (group A1, 11 patients who had no ultrafiltration loss; group A2, 9 patients who had ultrafiltration loss; and group B, 12 specimens who had end-stage renal disease prior to induction of CAPD.ResultsIn group B, staining for HSP47, HSP70, and collagen III in peritoneal tissues was faint, and only a few cells were positive for α-SMA and CD68. In contrast, HSP47, HSP70, and collagen III were expressed in areas of thickened connective tissues in fibrotic peritoneal specimens of CAPD patients. The expression level of HSP47, HSP70, collagen III, and α-SMA and the number of CD68-positive cells in group A2 were significantly higher than those in groups A1 and B. HSP47/HSP70-positive cells were mesothelial cells, adipocytes, and α-SMA–positive myofibroblasts. Furthermore, the expression level of HSP47 was significantly higher in peritoneal specimens from patients with refractory peritonitis than without it and was significantly higher in patients with more than 60 months of CAPD therapy than that in patients with less than 60 months of CAPD.ConclusionOur results indicate that CAPD therapy may induce HSPs in the peritoneal tissue, and that peritonitis in CAPD patients may be associated with the progression of peritoneal sclerosis at least through HSP47 expression and chronic macrophage infiltration. Our data also suggest that the progression of peritoneal sclerosis in such patients is associated with deterioration of peritoneal ultrafiltration function. Expression of heat shock proteins 47 and 70 in the peritoneum of patients on continuous ambulatory peritoneal dialysis. Peritoneal sclerosis, characterized by collagen accumulation, is a serious complication in continuous ambulatory peritoneal dialysis (CAPD) therapy. Heat shock protein 47 (HSP47) is a collagen-specific molecular chaperon and is closely associated with collagen synthesis. We determined the expression of HSP47 and HSP70 (nonspecific for collagen synthesis) by immunohistochemistry in peritoneal tissues of patients on CAPD. The tissue for collagen III, α-smooth muscle actin (α-SMA), and CD68 (a marker for macrophages) were also stained. Thirty-two peritoneal samples were divided into three groups (group A1, 11 patients who had no ultrafiltration loss; group A2, 9 patients who had ultrafiltration loss; and group B, 12 specimens who had end-stage renal disease prior to induction of CAPD. In group B, staining for HSP47, HSP70, and collagen III in peritoneal tissues was faint, and only a few cells were positive for α-SMA and CD68. In contrast, HSP47, HSP70, and collagen III were expressed in areas of thickened connective tissues in fibrotic peritoneal specimens of CAPD patients. The expression level of HSP47, HSP70, collagen III, and α-SMA and the number of CD68-positive cells in group A2 were significantly higher than those in groups A1 and B. HSP47/HSP70-positive cells were mesothelial cells, adipocytes, and α-SMA–positive myofibroblasts. Furthermore, the expression level of HSP47 was significantly higher in peritoneal specimens from patients with refractory peritonitis than without it and was significantly higher in patients with more than 60 months of CAPD therapy than that in patients with less than 60 months of CAPD. Our results indicate that CAPD therapy may induce HSPs in the peritoneal tissue, and that peritonitis in CAPD patients may be associated with the progression of peritoneal sclerosis at least through HSP47 expression and chronic macrophage infiltration. Our data also suggest that the progression of peritoneal sclerosis in such patients is associated with deterioration of peritoneal ultrafiltration function.