Diffusion-weighted images of the prostate can suffer from a "hazy" background in low signal-intensity areas. We hypothesize that enhanced image processing (EIP) using complex averaging reduces artifacts, noise, and distortion in conventionally acquired diffusion-weighted images and synthesized high b-value images, thus leading to higher image quality and better detection of potentially malignant lesions. Conventional DWI trace images with a b-value of 1000 s/mm2 (b1000), calculated images with a b-value of 2000 s/mm2 (cb2000), and ADC maps of 3T multiparametric prostate MRIs in 53 patients (age 68.8 ± 10 years) were retrospectively evaluated. Standard images were compared to images using EIP. In the standard images, 36 lesions were detected in the peripheral zone and 20 in the transition zone. In 13 patients, EIP led to the detection of 8 additional lesions and the upgrading of 6 lesions; 6 of these patients were diagnosed with prostate carcinoma Gleason 7 or 8. EIP improved qualitative ratings for overall image quality and lesion detectability. Artifacts were significantly reduced in the cb2000 images. Quantitative measurements for lesion detectability expressed as an SI ratio were significantly improved. EIP using complex averaging led to image quality improvements in acquired and synthesized DWI, potentially resulting in elevated diagnostic accuracy and management changes.
Read full abstract