There is evidence that vestibular sensory processing affects, and is affected by, higher cognitive processes. This is highly relevant from a clinical perspective, where there is evidence for cognitive impairments in patients with peripheral vestibular deficits. The vestibular system performs complex probabilistic computations, and we claim that understanding these is important for investigating interactions between vestibular processing and cognition. Furthermore, this will aid our understanding of patients’ self-motion perception and will provide useful information for clinical interventions. We propose that cognitive training is a promising way to alleviate the debilitating symptoms of patients with complete bilateral vestibular loss (BVP), who often fail to show improvement when relying solely on conventional treatment methods. We present a probabilistic model capable of processing vestibular sensory data during both passive and active self-motion. Crucially, in our model, knowledge from multiple sources, including higher-level cognition, can be used to predict head motion. This is the entry point for cognitive interventions. Despite the loss of sensory input, the processing circuitry in BVP patients is still intact, and they can still perceive self-motion when the movement is self-generated. We provide computer simulations illustrating self-motion perception of BVP patients. Cognitive training may lead to more accurate and confident predictions, which result in decreased weighting of sensory input, and thus improved self-motion perception. Using our model, we show the possible impact of cognitive interventions to help vestibular rehabilitation in patients with BVP.
Read full abstract