Corticotropin-releasing hormone (CRH), the principal neuropeptide regulator of pituitary ACTH secretion, is also produced at peripheral inflammatory sites, where it acts as a proinflammatory cytokine, and by the Leydig cell of the testis, where it exerts autocrine inhibition of testosterone biosynthesis. Because key ovarian functions, such as ovulation and luteolysis, represent aseptic inflammatory responses, and because the theca cell is the functional equivalent of the Leydig cell, we explored the CRH presence in the ovary, first, by specific CRH immunohistochemistry of adult cycling female Sprague-Dawley rat ovaries. We detected cytoplasmic immunoreactive CRH (IrCRH) in theca and stromal cells and in cells within the corpora lutea, at all phases of the estrous cycle. Using a specific radioimmunoassay, we measured IrCRH in extracts of rat ovaries (0.042-0.126 pmol/g wet tissue). The mobility of the ovarian IrCRH molecule was similar to that of rat/human CRH by reverse phase HPLC. To investigate the CRH action in the ovary, we identified, characterized, and localized CRH receptors in the rat ovary. Binding was linear with increasing tissue concentration, saturable, and of high affinity. Scatchard analysis of 125I-Tyr-ovine CRH competitive displacement curves indicated a high affinity binding site with a Kd of approximately 6 nM and a Bmax value of approximately 61 fM/mg protein. Autoradiographic studies revealed CRH receptors primarily in ovarian theca and stroma. We conclude that IrCRH and CRH receptors are present in rat ovaries, suggesting that this neuropeptide may play a regulatory role in this gonad, perhaps through its proinflammatory properties and/or by participating in the auto/paracrine regulation of steroid biosynthesis. Functional studies are necessary to define the role(s) of CRH in the ovary.
Read full abstract