T-type Ca(2+) channels are believed to play an important role in pain perception, and anesthetic steroids such as alphaxalone and allopregnanolone, which have a 5alpha-configuration at the steroid A, B ring fusion, are known to inhibit T-type Ca(2+) channels and cause analgesia in a thermal nociceptive model (Soc Neurosci Abstr 29:657.9, 2003). To define further the structure-activity relationships for steroid analgesia, we synthesized and examined a series of 5beta-reduced steroids for their ability to induce thermal antinociception in rats when injected locally into the peripheral receptive fields of the nociceptors and studied their effects on T-type Ca(2+) channel function in vitro. We found that most of the steroids completely blocked T-type Ca(2+) currents in vitro with IC(50) values at a holding potential of -90 mV ranging from 2.8 to 40 microM. T current blockade exhibited mild voltage-dependence, suggesting that 5beta-reduced neuroactive steroids stabilize inactive states of the channel. For the most potent steroids, we found that other voltage-gated currents were not significantly affected at concentrations that produce nearly maximal blockade of T currents. All tested compounds induced dose-dependent analgesia in thermal nociceptive testing; the most potent effect (ED(50), 30 ng/100 microl) obtained with a compound [(3beta,5beta,17beta)-3-hydroxyandrostane-17-carbonitrile] that was also the most effective blocker of T currents. Compared with previously studied 5alpha-reduced steroids, these 5beta-reduced steroids are more efficacious blockers of neuronal T-type Ca(2+) channels and are potentially useful as new experimental reagents for understanding the role of neuronal T-type Ca(2+) channels in peripheral pain pathways.
Read full abstract