Quantitative contrast-enhanced breast computed tomography (CT) has the potential to improve the diagnosis and management of breast cancer. Traditional CT methods using energy-integrated detectors and dual-exposure images with different incident spectra for material discrimination can increase patient radiation dose and be susceptible to motion artifacts and spectral resolution loss. Photon Counting Detectors (PCDs) offer a promising alternative approach, enabling acquisition of multiple energy levels in a single exposure and potentially better energy resolution. Gallium arsenide (GaAs) is particularly promising for breast PCD-CT due to its high quantum efficiency and reduction of fluorescence x-rays escaping the pixel within the breast imaging energy range. In this study, the spectral performance of a GaAs PCD for quantitative iodine contrast-enhanced breast CT was evaluated. A GaAs detector with a pixel size of 100 μm, a thickness of 500 μm was simulated. Simulations were performed using cylindrical phantoms of varying diameters (10 cm, 12 cm, and 16 cm) with different concentrations and locations of iodine inserts, using incident spectra of 50, 55, and 60 kVp with 2 mm of added aluminum filtration and and a mean glandular dose of 10 mGy. We accounted for the effects of beam hardening and energy detector response using TIGRE CT open-source software and the publicly available Photon Counting Toolkit (PcTK). Material-specific images of the breast phantom were produced using both projection and image-based material decomposition methods, and iodine component images were used to estimate iodine intake. Accuracy and precision of the proposed methods for estimating iodine concentration in breast CT images were assessed for different material decomposition methods, incident spectra, and breast phantom thicknesses. The results showed that both the beam hardening effect and imperfection in the detector response had a significant impact on performance in terms of Root Mean Squared Error (RMSE), precision, and accuracy of estimating iodine intake in the breast. Furthermore, the study demonstrated the effectiveness of both material decomposition methods in making accurate and precise iodine concentration predictions using a GaAs-based photon counting breast CT system, with better performance when applying the projection-based material decomposition approach. The study highlights the potential of GaAs-based photon counting breast CT systems as viable alternatives to traditional imaging methods in terms of material decomposition and iodine concentration estimation, and proposes phantoms and figures of merit to assess their performance.