Peripheral nerve (PN) autografts were used in the adult rat to join the midcervical spinal cord to a nearby denervated skeletal muscle. Retrograde tracing, morphological and electrophysiological studies indicated the following: 1) a great number of neurons, located bilaterally, between C3 and C7, in most laminae of the grey matter, extended axons into the PN grafts, 2) a lesser number of neurons regenerated up to the reconnected muscle, but most of them were typical motoneurons, 3) neuromuscular junctions were formed in ectopic locations, around the tip of the grafted nerve, and at the sites of original endplates, 4) these junctions were functional and formed by axons that had regenerated into the PN bridges, as muscle contraction was obtained by electrical stimulation of the grafted nerves, 5) they were proved to be cholinergic since endplate potentials, evoked by stimulating the PN graft, were suppressed by curare. These results strongly suggest that spinal neurons, and especially motoneurons, are involved in the formation, through PN bridges, of new functional cholinergic connections with denervated skeletal muscles.
Read full abstract