We present an evaluation of a novel technique for continuous (i.e., automatic) monitoring of relative cardiac output (CO) changes by long time interval analysis of a peripheral arterial blood pressure (ABP) waveform in humans. We specifically tested the mathematical analysis technique based on existing invasive and noninvasive hemodynamic data sets. With the former data set, we compared the application of the technique to peripheral ABP waveforms obtained via radial artery catheterization with simultaneous thermodilution CO measurements in 15 intensive care unit patients in which CO was changing because of disease progression and therapy. With the latter data set, we compared the application of the technique to noninvasive peripheral ABP waveforms obtained via a finger-cuff photoplethysmography system with simultaneous Doppler ultrasound CO measurements made by an expert in 10 healthy subjects during pharmacological and postural interventions. We report an overall CO root-mean-squared normalized error of 15.3% with respect to the invasive hemodynamic data set and 15.1% with respect to the noninvasive hemodynamic data set. Moreover, the CO errors from the invasive and noninvasive hemodynamic data sets were only mildly correlated with mean ABP (rho = 0.41, 0.37) and even less correlated with CO (rho = -0.14, -0.17), heart rate (rho = 0.04, 0.19), total peripheral resistance (rho = 0.38, 0.10), CO changes (rho = -0.26, -0.20), and absolute CO changes (rho = 0.03, 0.38). With further development and successful prospective testing, the technique may potentially be employed for continuous hemodynamic monitoring in the acute setting such as critical care and emergency care.
Read full abstract