Automated activity monitoring (AAM) systems are critical in the dairy industry for detecting estrus and optimizing the timing of artificial insemination (AI), thus enhancing pregnancy success rates in cows. This study developed a predictive model to improve pregnancy success by integrating AAM data with cow-specific and environmental factors. Utilizing data from 1,054 cows, this study compared the pregnancy outcomes between two AI timings-8 or 10 h post-AAM alarm. Variables such as age, parity, body condition, locomotion, and vaginal discharge scores, peripartum diseases, the breeding program, the bull used for AI, milk production at the time of AI, and environmental conditions (season, relative humidity, and temperature-humidity index) were considered alongside the AAM data on rumination, activity, and estrus intensity. Six predictive models were assessed to determine their efficacy in predicting pregnancy success: logistic regression, Bagged AdaBoost algorithm, linear discriminant, random forest, support vector machine, and Bagged Classification Tree. Integrating the on-farm data with AAM significantly enhanced the pregnancy prediction accuracy at AI compared to using AAM data alone. The random forest models showed a superior performance, with the highest Kappa statistic and lowest false positive rates. The linear discriminant and logistic regression models demonstrated the best accuracy, minimal false negatives, and the highest area under the curve. These findings suggest that combining on-farm and AAM data can significantly improve reproductive management in the dairy industry.
Read full abstract