This study presents a novel, three-dimensional method for measuring the tilt angle of the tilted optic disc (TOD) using spectral-domain optical coherence tomography (SD-OCT) and investigates the correlation between ocular-related parameters and TOD. We included the right eyes of 243 healthy young individuals, categorized by axial length. We measured the ovality index (OI) and dihedral angle (DA) using SD-OCT infrared ray fundus photographs and high-resolution cross-sectional images of the optic disc, respectively. The relationships between OI, DA, and ocular-related parameters were analyzed. Eyes in the longer axial length group exhibited a lower OI and a higher DA, along with thinner nasal and inferonasal circumpapillary retinal nerve fiber layer (cpRNFL) and thicker temporal and superotemporal cpRNFL. There was a significant relationship between DA and cpRNFL thickness. The new method utilizing DA to measure the tilt angle of TOD demonstrated high repeatability. We propose a novel, three-dimensional, and quantitative method for evaluating the tilt degree of TOD. A higher degree of myopia indicated a greater tilt angle of the TOD, and a greater TOD suggested additional changes in cpRNFL thickness. These findings should be considered when interpreting increased susceptibility and early assessment of glaucoma in myopia. DA could serve as a superior indicator for describing TOD morphology during eyeball elongation and evaluating its impact on related parameters of the optic disc and peripapillary structures in the myopic population.
Read full abstract