Excessive application of nitrogen (N) fertilizers in agriculture poses significant environmental risks, notably nitrate leaching into groundwater. This study evaluates soil water dynamics and the transport of urea, ammonium, and nitrate under variable-saturated conditions in a long-term experimental field in Croatia, Europe. Utilizing HYDRUS-1D and HYDRUS-2D models, we simulated water flow and nitrogen transformation and transport across six lysimeter-monitored locations over four years (2019–2023), incorporating diverse crop rotations and N addition. Key modeled processes included nitrification, urea hydrolysis, and nitrate leaching, integrating field-measured parameters and climatic conditions. The models achieved high reliability, with R2 values for water flow ranging from 0.58 to 0.97 and for nitrate transport from 0.13 to 0.97; however, some cases reported lower reliability. Results revealed that nitrate leaching was influenced by precipitation patterns, soil moisture, crop growth stages, and fertilization timing. Peak nitrate losses were observed during early crop growth and post-harvest periods when elevated soil moisture and reduced plant uptake coincided. The findings highlight the importance of optimizing nitrogen application strategies to balance crop productivity and environmental protection. This research demonstrates the effectiveness of numerical modeling as a tool for sustainable nitrogen management and groundwater quality preservation in agricultural systems. It also indicates the need for further development by capturing some of the processes such as identification in the N cycle.
Read full abstract