The oral microbiome-dependent nitrate (NO3 -)-nitrite (NO2 -)-nitric oxide (NO) pathway may help regulate blood pressure. NO2 --producing bacteria in subgingival plaque are reduced in relative abundance in patients with untreated periodontitis compared with periodontally healthy patients. In periodontitis patients, the NO2 --producing bacteria increase several months after periodontal treatment. The early effects of periodontal treatment on NO2 --producing bacteria and the NO3 --NO2 --NO pathway remain unknown. The aim of this study was to determine how periodontal treatment affects the oral NO2 --producing microbiome and salivary NO3 - and NO2 - levels over time. The subgingival microbiota of 38 periodontitis patients was analysed before (baseline [BL]) and 1, 7 and 90 days after periodontal treatment. Changes in NO2 --producing bacteria and periodontitis-associated bacteria were determined by 16s rRNA Illumina sequencing. Saliva samples were collected at all-time points to determine NO3 - and NO2 - levels using gas-phase chemiluminescence. A significant increase was observed in the relative abundance of NO2 --producing species between BL and all subsequent timepoints (all p<0.001). Periodontitis-associated species decreased at all timepoints, relative to BL (all p<0.02). NO2 --producing species negatively correlated with periodontitis-associated species at all timepoints, with this relationship strongest 90 days post-treatment (ρ=-0.792, p<0.001). Despite these findings, no significant changes were found in salivary NO3 - and NO2 - over time (all p>0.05). Periodontal treatment induced an immediate increase in the relative abundance of health-associated NO2 --producing bacteria. This increase persisted throughout periodontal healing. Future studies should test the effect of periodontal treatment combined with NO3 - intake on periodontal and cardiovascular health.
Read full abstract