In this work, two new adaptations for the trigonometric and hyperbolic trigonometric function approaches have been presented. These two modifications, entitled modified extended rational sin\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sin$$\\end{document}–cos\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\cos$$\\end{document} function technique and modified extended rational sinh\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\sinh$$\\end{document}–cosh\\documentclass[12pt]{minimal} \\usepackage{amsmath} \\usepackage{wasysym} \\usepackage{amsfonts} \\usepackage{amssymb} \\usepackage{amsbsy} \\usepackage{mathrsfs} \\usepackage{upgreek} \\setlength{\\oddsidemargin}{-69pt} \\begin{document}$$\\cosh$$\\end{document} function method, have been applied for the first time to the Fokas system that represents the nonlinear pulse propagation in monomode fiber optics. We intend to produce innovative, explicit traveling waves, solitons, and periodic wave solutions. These achieved outcomes are presented in the form of exponential functions, trigonometric hyperbolic functions, and combination constructions of the exponential functions along with the trigonometric and hyperbolic trigonometric functions. The obtained solutions reveal significant features of the physical phenomenon and are new. The investigated model incorporates the notions of dispersion, transverse diffusion, degree of dispersion, nonlinear pairing, nonlinear immersion, and the force of the nonlinear interaction among the two components of the system. For the most accurate visual evaluation of the physical importance and dynamic properties, we have presented the findings in a variety of plots, which involve two- and three-dimensional representations. One or more elements in our research that are unique, such as newly modified methodologies, is a new observation that leads researchers to invest in new solutions.
Read full abstract