Earlier discovery and presentation of an inherent order of the regular and semiregular polyhedra that displays three interrelated classes, together with consideration of the honeycombs, has led me to posit the existence of a coherent and integral metapattern that should relate the various all-space-filling periodical honeycombs, which I advance in an earlier paper that should be read in conjunction with thispaper, as they form part of a series.Here, I approach the periodic polyhedral honeycombs byexploring how pairs of polyhedra regularly combine or mate, whether proximally or distally, along the √1, √2 and √3 axes of their reference cubic and tetrahedral lattices. This is first performed for pairs of what I elsewhere term the Great Enablers (GEs), the positive and negative tetrahedra and truncated tetrahedra; secondly, for pairs of GEs and the Primary Polytopes (PPs); and thirdly, for pairs of PPs. This reveals that these three forms of mating, GE:GE, GE:PP and PP:PP, correlate with the three symmetry groups {2,3,3|2,3,3}, {2,3,3|2,3,4} and {2,3,4|2,3,4}, respectively, of the periodical honeycombs.These matings typically occur in naturallyoccurring pairs along each axis, so in general, a PP mates with just two PPs, though in certain cases one of these is the same as the original. These pairsof matings display a one-to-one correspondence with the possible periodic honeycombs. Differentiating the PPs into two groups of four according to their formal behavior suggests a pathway towards a proposed new order of the honeycombs.
Read full abstract