The cell death induced by the monoterpene anticancer agent perillyl alcohol correlates to the increased expression of certain proapoptotic genes known to influence cell survival. Whereas sequence-specific DNA-binding factors dictate the expression patterns of genes through transcriptional regulation, those transcriptional factors influencing constitutive cell survival with perillyl alcohol treatment are not well studied. Here, we investigated whether the monoterpenes can regulate the activity of nuclear factor-kappaB (NF-kappaB), a calcium-dependent transcription factor necessary for survival in the WEHI-231 B-lymphoma cells. Unique among the monoterpenes, perillyl alcohol short-term treatment induced a persistent decrease of calcium levels, whereas other various monoterpenes caused transient reductions in calcium levels. Perillyl alcohol treatment also rapidly elicited reductions of NF-kappaB DNA-binding activity and target gene induction, which was associated with an increase in apoptosis in these B-lymphoma cells. This apoptosis was directly due to NF-kappaB because its prior activation abolished the cell killing effects of perillyl alcohol treatment. Our findings suggest that perillyl alcohol can inhibit NF-kappaB function to modulate gene expression patterns and cell survival of certain B-lymphoma cells. The effects of perillyl alcohol were not limited to these B-lymphoma cells but were also observed in MDA-MB 468 cells, an estrogen receptor-negative breast cancer cell line. These results identify a calcium-dependent NF-kappaB pathway as a molecular target of perillyl alcohol activity in different cancer cell types.
Read full abstract