The chromosome 1q12 region harbors the genome's largest pericentromeric heterochromatin domain that includes tandemly repeated satellite III DNA [SatIII (1)]. Increased SatIII (1) copy numbers have been found in cultured human skin fibroblasts (HSFs) during replicative senescence. The aim of this study was to analyze the variation in SatIII (1) abundance in cultured HSFs at early passages depending on the levels of endogenous and exogenous stress. We studied 10 HSF cell lines with either high (HSFs from schizophrenic cases, n = 5) or low (HSFs from healthy controls, n = 5) levels of oxidative stress. The levels of endogenous stress were estimated by the amounts of reactive oxygen species, DNA damage markers (8-hydroxy-2'-deoxyguanosine, gamma-H2A histone family member X), pro- and antioxidant proteins (NADPH oxidase 4, superoxide dismutase 1, nuclear factor erythroid 2-related factor 2), and proteins that regulate apoptosis and autophagy (B-cell lymphoma 2 [Bcl-2], Bcl-2-associated X protein, light chain 3). SatIII (1) copy numbers were measured using the nonradioactive quantitative hybridization technique. For comparison, the contents of telomeric and ribosomal RNA gene repeats were determined. RNASATIII (1 and 9) were quantified using quantitative Polymerase Chain Reaction (PCR). Increased SatIII (1) contents in DNA from confluent HSFs were positively correlated with increased oxidative stress. Confluent cell cultivation without medium replacement and heat shock induced a decrease of SatIII (1) in DNA in parallel with a decrease in RNASATIII (1) and an increase in RNASATIII (9). During HSF cultivation, cells with increased SatIII (1) content accumulated in the cell pool under conditions of exaggerated oxidative stress. This fraction of cells decreased after the additional impact of exogenous stress. The process seems to be oscillatory.
Read full abstract