Magnetocardiography (MCG) is a novel non-invasive technique that detects subtle magnetic fields generated by cardiomyocyte electrical activity, offering sensitive detection of myocardial ischemia. This study aimed to assess the ability of MCG to predict impaired myocardial perfusion using single-photon emission computed tomography (SPECT). A total of 112 patients with chest pain underwent SPECT and MCG scans, from which 65 MCG output parameters were analyzed. Using least absolute shrinkage and selection operator (LASSO) regression to screen for significant MCG variables, three machine learning models were established to detect impaired myocardial perfusion: random forest (RF), decision tree (DT), and support vector machine (SVM). The diagnostic performance was evaluated based on the sensitivity, specificity, accuracy, positive predictive value (PPV), negative predictive value (NPV), and area under the receiver operating characteristic curve (AUC). Five variables, the ratio of magnetic field amplitude at R-peak and positive T-peak (RoART+), R and T-peak magnetic field angle (RTA), maximum magnetic field angle (MAmax), maximum change in current angle (CCAmax), and change positive pole point area between the T-wave beginning and peak (CPPPATbp), were selected from 65 automatic output parameters. RTA emerged as the most critical variable in the RF, DT, and SVM models. All three models exhibited excellent diagnostic performance, with AUCs of 0.796, 0.780, and 0.804, respectively. While all models showed high sensitivity (RF = 0.870, DT = 0.826, SVM = 0.913), their specificity was comparatively lower (RF = 0.500, DT = 0.300, SVM = 0.100). Machine learning models utilizing five key MCG variables successfully predicted impaired myocardial perfusion, as confirmed by SPECT. These findings underscore the potential of MCG as a promising future screening tool for detecting impaired myocardial perfusion. ChiCTR2200066942, https://www.chictr.org.cn/showproj.html?proj=187904.
Read full abstract- All Solutions
Editage
One platform for all researcher needs
Paperpal
AI-powered academic writing assistant
R Discovery
Your #1 AI companion for literature search
Mind the Graph
AI tool for graphics, illustrations, and artwork
Unlock unlimited use of all AI tools with the Editage Plus membership.
Explore Editage Plus - Support
Overview
3673 Articles
Published in last 50 years
Articles published on Perfusion Abnormalities
Authors
Select Authors
Journals
Select Journals
Duration
Select Duration
3185 Search results
Sort by Recency