Clostridium perfringens is a ubiquitous, Gram-positive, spore-forming bacterium. It can contaminate many types of retail meat products and cause food poisoning by producing enterotoxins in the small intestines of humans and domestic animals. We investigated the prevalence, toxin-encoding gene profile, and antimicrobial resistance of C. perfringens in beef, chicken, and pork meat purchased from retail markets in Seoul, Korea. C. perfringens was detected according to the International Organization for Standardization 7937, with some modifications, and confirmed using the Vitek 2 system. In total, 38 C. perfringens strains were isolated from 200 meat samples (38/200, 19%; thirty-three from chicken, and five from beef). Among the six toxins evaluated, including alpha, beta, epsilon, iota, enterotoxin (encoded in the cpe gene), and netB, only the cpa gene was detected in all isolates by polymerase chain reaction (PCR) amplification. The antimicrobial resistance of the isolates was evaluated using the agar dilution method and resistance to ampicillin (12/38, 31.6%), tetracycline (38/38, 100%), chloramphenicol (26/38, 68.4%), metronidazole (13/38, 34.2%), and imipenem (27/38, 71%) was observed. Interestingly, 30 of the 38 isolates (78.9%) were multiple-drug resistant, showing resistance to more than three different antimicrobial classes.
Read full abstract