Phenotypic bacitracin resistance has been reported in Clostridium perfringens. However, the genes responsible for the resistance have not yet been characterized. Ninety-nine C. perfringens isolates recovered from broilers and turkeys were tested for phenotypic bacitracin resistance. Bacitracin MIC90 (>256 µg/ml) was identical for both turkey and chicken isolates; whereas MIC50 was higher in turkey isolates (6 µg/ml) than in chicken isolates (3 µg/ml). Twenty-four of the 99 isolates showed high-level bacitracin resistance (MIC breakpoint >256 µg/ml) and the genes encoding for this resistance were characterized in C. perfringens c1261_A strain using primer walking. Sequence analysis and percentages of amino acid identity revealed putative genes encoding for both an ABC transporter and an overproduced undecaprenol kinase in C. perfringens c1261_A strain. These two mechanisms were shown to be both encoded by the putative bcrABD operon under the control of a regulatory gene, bcrR. Efflux pump inhibitor thioridazine was shown to increase significantly the susceptibility of strain c1261_A to bacitracin. Upstream and downstream from the bcr cluster was an IS1216-like element, which may play a role in the dissemination of this resistance determinant. Pulsed-field gel electrophoresis with prior double digestion with I-CeuI/MluI enzymes followed by hybridization analyses revealed that the bacitracin resistance genes bcrABDR were located on the chromosome. Semi-quantitative RT-PCR demonstrated that this gene cluster is expressed under bacitracin stress. Microarray analysis revealed the presence of these genes in all bacitracin resistant strains. This study reports the discovery of genes encoding for a putative ABC transporter and an overproduced undecaprenol kinase associated with high-level bacitracin resistance in C. perfringens isolates from turkeys and broiler chickens.
Read full abstract