Thermally activated delayed fluorescence (TADF) materials are widely used in the field of organic light-emitting diodes (OLEDs) because they can capture both singlet and triplet excitons for light emission. However, only scare attention has been paid to the application of TADF materials in perovskite LEDs (PeLEDs) and the understanding of effects of TADF materials in PeLEDs is limited. In this study, a new role of TADF materials for achieving high-quality perovskite films to enhance the performance of PeLEDs is emphasized. TADF materials are introduced into quasi-2D blue PeLEDs to assist in the crystallization of perovskites during film annealing and ensure the formation of high-quality films with reduced defects, enhancing device performance. Additionally, a step-like hole transport layer has been constructed to reduce the hole transport barrier, which can further enhance the performance of PeLEDs. The resultant blue PeLEDs exhibits an external quantum efficiency of 5.44%, which is 12.7-fold higher than that of the control device. Furthermore, a turn-on voltage of 2.6 V is achieved, which is the lowest for TADF-based blue PeLEDs. The findings may not only unlock a new role of TADF materials in blue PeLEDs, but also provide an alternative pathway to achieve high-performance PeLEDs.
Read full abstract