AbstractFor better blast furnace performance, there has always been a need for better quality raw materials like sinter, lump ore, and pellets. Among these raw materials the usage of sinter in blast furnace is at higher side compared to other iron bearing materials. As the quality of sinter product improves, its usage in blast furnaces also increases. Iron ore fines are the main source for sinter making. To improve the sinter properties it is necessary to provide good quality of iron ore fines. Due to depletion of high grade iron ore resources, goethite and limonitic ore content in iron ore fines is expected to increase gradually. Usually limonitic and goethite ore are associated with higher alumina and LOI. The conventional sintering process is one of the well established processes for high quality hematite ore. It does not fully respond to the low grade iron ore associated with goethite and limonite. This has led to deterioration in sinter properties and productivity. In recent years the improvement in the quasi‐particle structure with the granulation process is an effective method for improving sinter quality and productivity. To improve the sinter quality and productivity for low grade iron ore fines, different granulation processes like the conventional one, and other two advanced granulation processes like coke breeze, and flux & coke breeze coating granulation were studied in detail by conducting laboratory pot grate sintering experiments. From the test results it was found that sinter productivity, physical and metallurgical properties of the sinter improved with flux & coke breeze coating granulation process compared to conventional and coke breeze coating granulation process.Proper selection of the granulation time is very important to achieve the desired sinter properties. In the present work detailed laboratory experiments have been carried out by varying the coating time from 30s to 110s to study the influence of flux & coke breeze coating granulation time on mineralogy, productivity, physical, and metallurgical properties of sinter. With a coating granulation time of 50s, higher productivity, higher yield, and stronger sinter (higher T.I) with lower RDI and ‐5mm size sinter were achieved.