The transient chlorophenol shock under some emergency conditions might directly affect the pollutant removal of bioreactor. Therefore, the recovery of bioreactor performance after transient chlorophenol shock is a noteworthy issue. In the present research, the performance, antioxidant response, microbial succession and functional genes of sequencing batch reactor (SBR) were evaluated under transient 2,4,6-trichlorophenol (2,4,6-TCP) shock. The chemical oxygen demand (COD) and ammonia nitrogen (NH4+-N) removal efficiencies decreased sharply in the first 4 days after 60 mg/L 2,4,6-TCP shock for 24 h and gradually recovered to normal in the subsequent 8 days. The nitrogen removal rates and their corresponding enzymatic activities rapidly decreased after transient 2,4,6-TCP shock and then gradually increased to normal. The increase of antioxidant enzymatic activity, Cu-Zn SOD genes and Fe-Mn SOD genes contributed to the recovery of SBR performance. The abundance of genes encoding ammonia monooxygenase and hydroxylamine dehydrogenase decreased after transient 2,4,6-TCP shock, including amoA, amoC and nxrA. Thauera, Dechloromonas and Candidatus_Competibacter played key roles in the restorative process, which provided stable abundances of narG, norB , norC and nosZ. The results will deeply understand into the effect of transient 2,4,6-TCP shock on bioreactor performance and provide theoretical basis to build promising recoveries strategy of bioreactor performance.
Read full abstract