Codonopsis convolvulacea is a highly valued Chinese medicinal plant containing diverse bioactive compounds. While roots/tubers have been the main medicinal parts used in practice, leaves and stems may also harbor valuable phytochemicals. However, research comparing volatiles across tissues is lacking. This study performed metabolomic profiling of leaves, stems, and tubers of C. convolvulacea to elucidate tissue-specific accumulation patterns of volatile metabolites. Ultra-high performance liquid chromatography-tandem mass spectrometry identified 302 compounds, belonging to 14 classes. Multivariate analysis clearly differentiated the metabolic profiles of the three tissues. Numerous differentially accumulated metabolites (DAMs) were detected, especially terpenoids and esters. The leaves contained more terpenoids, ester, and alcohol. The stems accumulated higher levels of terpenoids, heterocyclics, and alkaloids with pharmaceutical potential. The tubers were enriched with carbohydrates like sugars and starch, befitting their storage role, but still retained reasonable amounts of valuable volatiles. The characterization of tissue-specific metabolic signatures provides a foundation for the selective utilization of C. convolvulacea parts. Key metabolites identified include niacinamide, p-cymene, tridecanal, benzeneacetic acid, benzene, and carveol. Leaves, stems, and tubers could be targeted for antioxidants, drug development, and tonics/nutraceuticals, respectively. The metabolomic insights can also guide breeding strategies to enhance the bioactive compound content in specific tissues. This study demonstrates the value of tissue-specific metabolite profiling for informing the phytochemical exploitation and genetic improvement of medicinal plants.
Read full abstract