In this study, a novel nanocomposite material comprising pure Fe3O4 (FO), doped Zn0.5Cu0.5Fe2O4-3 (ZCFO-3), and Zn0.5Cu0.5Fe2O4-3@ Multi-walled carbon nanotube (ZCFO-3@MWCNT) nanocomposite material is carefully prepared using a simple one-step hydrothermal process. Comprehensive surface and morphological analysis are conducted using X-ray diffraction (XRD), Field emission scanning electron microscopy (FESEM), and High-resolution transmission electron microscopy (HRTEM), while compositional studies are investigated through Raman spectroscopy and X-ray photoelectron spectroscopy (XPS). The electrochemical performance is fully analyzed through Cyclic voltammetry (CV), Electrochemical impedance spectroscopy (EIS), rate capability tests, discharge/charge capacity, and cyclic stability evaluations. Among these three nanomaterials, ZCFO-3@MWCNT nanocomposite at 100 mA g−1 current density reveals the best performance, with a discharge capacity of 1974 mAh g–1, ZCFO-3 and FO reveal 1340 mAh g–1 and 1317 mAh g–1 respectively. After 800 cycles at 500 mA g−1 current density, ZCFO-3@MWCNT stays strong with a discharge capacity of 646 mAh g–1, while ZCFO-3 manages only 362 mAh g–1 and FO only 111 mAh g–1. After 1200 cycles at 500 mA g−1, the nanocomposite still delivers 518 mAh g–1. This study suggests that ZCFO-3@MWCNT could be a promising anode material for lithium-ion batteries.