Metallic nanoshells have attracted more attention compared to their solid counterparts as a result of producing high-yield plasmonic effects, such as large scattering and absorption cross-sections, potent near-field, strong optical trapping and long fluorescence time, during the plasmon hybridization mechanism. However, no focused study has been performed on optimizing this type of nanoparticles to improve the performance of polymer solar cells (PSCs) because they are difficult to synthesize. Our coupled optical-electrical simulation results show that the effort to fabricate may be worth it. In this work, we propose SiO2@Ag@SiO2 nanoparticles and optimize their size, material, and shells thickness. We show that their optimization makes full use of plasmonic effects possible, providing the PSCs with improvements in light concentration and optical absorption. Subsequently, we investigate the effect of nanoparticles’ concentration, their array and shape on the performance of PSCs based on PTB7:PC71BM, P3HT:PC60BM and PCDTBT:PC70BM. For the first time, we show that spherical nanoparticles can more improve the performance of PSCs compared to cubic ones, despite the fact that cubic nanoparticles have better plasmonic properties than their spherical counterparts. The results show significant improvement in electrical performance of the PSCs which results in efficiency enhancement of ~63%, ~106% and ~55%, respectively.
Read full abstract