This study explores the performance and flow characteristics of radial labyrinth pumps (RLPs) under various geometrical configurations and operating conditions. Experimental investigations and numerical simulations were conducted to evaluate the impact of design parameters such as blade geometry, channel width and blade angle on pump hydraulic performance. The numerical model, developed using the realizable k-ε turbulence model, was validated with experimental data, achieving satisfactory convergence (4.8%—bladed active disc operating with a smooth passive disc and 3.0%—bladed active disc operating with a bladed passive disc). Analysis of the velocity profiles and vortex structures formed between the active and passive discs was performed. These findings underscore the importance of optimizing disc geometry to balance centrifugal effects and momentum exchange. The obtained head for the model with a bladed active disc operating with a smooth passive disc was H = 24.1 m, while, for the bladed active disc operating with a bladed passive disc, it was almost 1.7 times higher at H = 40.3 m. Additionally, the research identifies potential zones within the pump where energy transfer processes differ, providing insight into targeted design improvements. The findings provide valuable information on the optimization of RLP designs and their broader applicability.
Read full abstract