Perfluoroalkyl acids (PFAAs), renowned for their exceptional physical and chemical properties, are ubiquitous in urban and rural environments. Despite their widespread usage, more knowledge is needed concerning their accumulation and transfer mechanisms within the aquatic food webs of urban fringe lakes, especially across rural-urban and seasonal scales. This study investigated the tissue distribution, bioaccumulation, biomagnification, associated human health risks, and potential risk mitigation strategies of 15 PFAAs within the food web of Luoma Lake, a prototypical urban fringe lake. All targeted PFAAs were detected in samples, with ∑PFAA concentrations ranging from 116.97 to 564.26 ng/g dw in muscles and 26.96–1850.95 ng/g dw in viscera. Spatial variations revealed significantly higher ∑PFAA concentrations in the muscles from the urban subregion (∑PFAA: 359.66 ± 76.48 ng/g dw) compared to the rural subregion (∑PFAA: 328.86 ± 87.51 ng/g dw). Seasonal fluctuations impacted PFAA concentrations in fish and crustacean muscles but exhibited negligible effects on bivalve muscles. Spatial variations only influenced PFAA concentrations in specific viscera (gill, liver, kidney), while seasonal changes had minimal effects on viscera. The organisms demonstrated varying bioaccumulation capacities, with crustaceans displaying the highest bioaccumulation potential, followed by crustaceans and fish. Both spatial and seasonal variations modulated the bioaccumulation patterns of PFAA in muscles, whereas bioaccumulation in viscera was only influenced by seasonal factors. Notably, PFAA biomagnification along the food web was exclusively governed by spatial distribution, remaining unaffected by seasonal changes. The human health risk assessment underscored the potential adverse health impacts of PFOS and PFOA, particularly on young children (aged 2 to <6 years). This study further proposed comprehensive recommendations for mitigating PFAA-induced health risks, encompassing source control, selective consumption, pre-cooking treatments, and strategic cooking method selection. This research provides crucial insights into the ecological behaviors and health implications of PFAA in urban fringe lakes.
Read full abstract