We studied the spin-polarized electron transport in oxygen-incorporated Au, Cu, and Fe single-atom chains (SACs) by first-principles calculations. We first investigated the mechanism responsible for the low conductance (<1G0) of the Au and Cu SACs in an oxygen environment reported in recent experiments. We found that for the Au SACs, the low conductance plateau around 0.6G0 can be attributed to a distorted chain doped with a single oxygen atom, while the 0.1G0 conductance comes from a linear chain incorporated with an oxygen molecule and is caused by an antibonding state formed by oxygen's occupied frontier orbital with dz orbitals of adjacent Au atoms. For the Cu SACs, the conductance about 0.3G0 is ascribed to a special configuration that contains Cu and O atoms in an alternating sequence. This exhibits an even-odd conductance oscillation with an amplitude of ∼0.1G0. In contrast, for the alternating Fe-O SACs, conductance overall decreases with an increase in O atoms and it approaches nearly zero for the chain with more than four O atoms. While the Cu-O SACs behave as perfect spin filters for one spin channel due to the half metallic nature, the Fe-O SACs can serve as perfect spin filters for two spin channels depending on the polarity of the applied gate voltage.
Read full abstract