The matching preclusion number of a graph is the minimum number of edges whose deletion results in a graph that has neither perfect matchings nor almost perfect matchings. As a generalization, Liu and Liu recently introduced the concept of fractional matching preclusion number. The fractional matching preclusion number (FMP number) of [Formula: see text], denoted by [Formula: see text], is the minimum number of edges whose deletion leaves the resulting graph without a fractional perfect matching. The fractional strong matching preclusion number (FSMP number) of [Formula: see text], denoted by [Formula: see text], is the minimum number of vertices and edges whose deletion leaves the resulting graph without a fractional perfect matching. In this paper, we study the fractional matching preclusion number and the fractional strong matching preclusion number for the radix triangular mesh [Formula: see text], and all the optimal fractional matching preclusion sets and fractional strong matching preclusion sets of these graphs are categorized.