Let G = (V, E) be a simple, undirected and connected graph. A dominating set S is called a secure dominating set if for each u ∈ V \ S, there exists v ∈ S such that (u, v) ∈ E and (S \{v}) ∪{u} is a dominating set of G. If further the vertex v ∈ S is unique, then S is called a perfect secure dominating set (PSDS). The perfect secure domination number γps(G) is the minimum cardinality of a perfect secure dominating set of G. Given a graph G and a positive integer k, the perfect secure domination (PSDOM) problem is to check whether G has a PSDS of size at most k. In this paper, we prove that PSDOM problem is NP-complete for split graphs, star convex bipartite graphs, comb convex bipartite graphs, planar graphs and dually chordal graphs. We propose a linear time algorithm to solve the PSDOM problem in caterpillar trees and also show that this problem is linear time solvable for bounded tree-width graphs and threshold graphs, a subclass of split graphs. Finally, we show that the domination and perfect secure domination problems are not equivalent in computational complexity aspects.