Experimental findings indicate that, in terrestrial ecosystems, nitrogen cycling changes under elevated partial pressure of atmospheric CO2 (pCO2). It was suggested that the concentration of N in plant litter as well as the amount of litter are responsible for these changes. However, for grassland ecosystems, there have been no relevant data available to support this hypothesis. Data from five years of the Swiss FACE experiment show that, under fertile soil conditions in a binary plant community consisting of Lolium perenne L. and Trifolium repens L., the concentration of litter N does not change under elevated atmospheric pCO2; this applies to harvest losses, stubble, stolons and roots as the sources of litter. This is in strong contrast to the CO2 response of L. perenne swards without associated legumes; in this case the above-ground concentration of biomass N decreased substantially. Increased symbiotic N2 fixation in T. repens nodules and a greater proportion of the N-rich T. repens in the community are regarded as the main mechanisms that buffer the increased C introduction into the ecosystem under elevated atmospheric pCO2. Our data also suggest that elevated atmospheric pCO2 results in greater amounts of litter, mainly due to increased root biomass production. This study indicates that, in a fertile grassland ecosystem with legumes, the concentration of N in plant litter is not affected by elevated atmospheric pCO2 and, thus, cannot explain CO2-induced changes in the cycling of N.
Read full abstract