BackgroundCurrent epicardial ablation technologies are limited by the inability to create adequate depth lesions and risk of collateral injury to extracardiac structures. ObjectiveThe purpose of this study was to evaluate the feasibility and efficacy of ventricular epicardial ablation with a novel balloon-expandable extreme-low-temperature (XLT) cryoablation catheter with an embedded insulation pontoon for protection of extracardiac structures, which has been specifically designed for epicardial ablation. MethodsTen healthy swine underwent surgical (n = 6) and subxiphoid percutaneous (n = 4) epicardial access. A total of 3–6 sites were targeted in the right and left ventricular wall for different exposure durations. Ablation was performed with a large footprint (surgical) and smaller footprint (percutaneous) version of the HeartPad (Corfigo Inc., Montclair, NJ) XLT system. The system consists of the balloon-expandable cryoablation catheter and a console. The console vaporizes liquid helium (–269°C) and controls continuous delivery of extremely cold helium gas at high flow rates through a high-efficiency ablation element mounted on an expandable insulation pontoon to protect extracardiac structures. Ablation lesions were assessed by gross pathology and histologic examination. ResultsA total of 42 epicardial lesions were created. Mean lesion depth increased progressively with ablation time (surgical catheter: 11 ± 2 mm at ≤30 seconds, 13 ± 4 mm at 60 seconds, 15 ± 3 mm at ≥120 seconds, P = .001; percutaneous catheter: 10 ± 2 mm at 30 seconds, 14 ± 2 mm at 60 seconds, 16 ± 2 mm at 120 seconds, P = .001). Lesion geometry seemed unaffected by presence and thickness of epicardial fat. One episode of ventricular fibrillation occurred after ablation over the atrioventricular groove and 2 adjacent obtuse marginal arteries. ConclusionSurgical or percutaneous epicardial ablation using the HeartPad XLT cryoablation system is feasible and can efficiently produce deep ventricular lesions in different epicardial locations.