Incorporating dynamic covalent linkages into thermosets can endow previously unrecyclable materials with new functionality and reprocessing options. Recent work has shown that the properties of the resulting covalent adaptable networks (CANs) are highly dependent on network topology, specifically the phenomenon of percolation, when permanent linkages form a connected skeleton that spans the material. Here, we use a model glassy disulfide based CAN to assess the merits of mean-field percolation theory as a tool to describe the network topology of CANs. After challenging the theory with both experimental data and a coarse-grained molecular dynamics simulation, we find that the mean-field approach is surprisingly accurate, despite its simplifying assumptions. The theory is particularly well suited to the unique context of mixed-composition CANs and provides practical guidance on how to design for reprocessability.