The impact of disturbances on a transportation network varies depending on the location and characteristics of the affected highway segments. Given limited resources, it is crucial to prioritize the protection and repair of highway segments based on their importance to maintaining overall network performance during disruptions. This paper proposes a novel method for ranking the importance of highway segments, leveraging a novel local–transit percolation and clustering-based method. Initially, the highway network is constructed by Graph theory, and the k-means clustering method is applied considering each segment’s transit and local traffic flows. Subsequently, a local–transit percolation model is constructed to generate an initial ranking of segments based on the size of the second-largest clusters during the percolation phase transition. A secondary ranking is performed by refining the results from the clustering phase. Results of a control experiment show that, compared to baselines, the proposed ranking approach demonstrates a significantly improved ability to sustain network demand and connectivity when high-ranked segments are moved. The model uncertainty analysis was conducted by adding noise to the gantry records, and the experiments demonstrated that the model exhibits robustness under noisy conditions. These findings highlight the effectiveness and superiority of the proposed method.
Read full abstract