PurposeStudies on medical and behavioral interventions for essential vocal tremor (EVT) have shown inconsistent effects on acoustical and perceptual outcome measures across studies and across participants. Remote acoustical and perceptual assessments might facilitate studies with larger samples of participants and repeated measures that could clarify treatment effects and identify optimal treatment candidates. Furthermore, remote acoustical and perceptual assessment might allow clinicians to monitor clients’ treatment responses and optimize treatment approaches during telepractice. Thus, the purpose of this study was to evaluate the accuracy of remote signal transmission and recording for acoustical and perceptual assessment of EVT. MethodSimulations of EVT were produced using a computational model and were recorded using local and remote procedures to represent client- and clinician-end recordings respectively. Acoustical analyses measured the extent and rate of fundamental frequency (fo) and intensity modulation to represent vocal tremor severity and the cepstral peak prominence (CPPS) to represent voice quality. The data were analyzed using repeated measures analysis of variance (ANOVA) with recording as the within-subjects factor and sex of the computational model as the between-subjects factor. ResultsThere was a significant main effect of recording on the rate of fo modulation and significant interactions of recording and sex for the extent of intensity modulation, rate of intensity modulation, and CPPS. Posthoc pairwise comparisons and analysis of effect size indicated that recording procedures had the largest effect on the extent of intensity modulation for male simulations, the rate of intensity modulation for male and female simulations, and the CPPS for male and female simulations. Despite having disabled all known software and computer audio enhancing options and having stable ethernet connections, there was inconsistent attenuation of signal amplitude in remote recordings that was most problematic for samples with a breathy voice quality but also affected samples with typical and pressed voice qualities. ConclusionsAcoustical measures that correlate to perception of vocal tremor and voice quality were altered by remote signal transmission and recording. In particular, signal transmission and recording in Zoom altered time-based estimates of intensity modulation and CPPS with male and female simulations of EVT and magnitude-based estimates of intensity modulation with male simulations of EVT. In contrast, signal transmission and recording in Zoom minimally altered time- and magnitude-based estimates of fo modulation with male and female simulations of EVT. Therefore, acoustical and perceptual assessments of EVT should be performed using audio recordings that are collected locally on the participant- or client-end, particularly when measuring modulation of intensity and CPP or estimating vocal tremor severity and voice quality. Development of procedures for collecting local audio recordings in remote settings may expand data collection for treatment research and enhance telepractice.