Dispersed reinforcement of concrete with various types of plant fibers is currently a fairly popular area in the field of construction materials science. The relevance of this topic is determined by the fact that the issue has not been studied on a large scale in comparison with concrete reinforced with artificial fibers, and the fact that these types of concrete meet the requirements of the Sustainable Development Goals. The purpose of this work was to evaluate the efficiency of using hemp fiber (HF) and flax fiber (FF) for the dispersed reinforcement of concrete, and to compare their efficiency and practical applicability in the construction industry. Before use, HF and FF were treated with a NaOH solution and stearic acid to increase their resistance to the aggressive alkaline environment of concrete. A total of 15 concrete compositions were made. The percentage of dispersed reinforcement for both types of fibers varied from 0.2% to 1.4%, with a step of 0.2%. The standard methods of mechanical testing and microscopy for investigation the properties of fresh and hardened concrete were applied. The optimum amount of HF in concrete was 0.6%, which provided an increase in compressive and flexural strength of 7.46% and 28.68%, respectively, and a decrease in water absorption of 13.58%. The optimum percentage of FF concrete reinforcement was 0.8%, which allowed an increase in compressive and flexural strength of 4.90% and 15.99%, respectively, and a decrease in water absorption of 10.23%. The results obtained during the experiment prove the possibility and effectiveness of the practical application of hemp and flax fibers in concrete composite technology.
Read full abstract