In this research work, optimized nebivolol-loaded lecithin-chitosan hybrid nanoparticles (NEB-LCNPs) were prepared using sequential screening and optimization designs. The design of experiments software (DoE) was used to obtain a robust formulation that can improve ocular delivery of the NEB in the treatment of glaucoma. The optimized NEB-LCNPs had a mean particle size of 170.5 ± 5.3 nm and drug loading of 10.5 ± 1.2%. These were further loaded in a dual-responsive in situ gel, designed and reported previously by our group. The NEB-LCNPs loaded in situ gel (NEB-LCNPs-ISG) was characterized for physicochemical properties, rheological behavior, stability, in vitro dissolution, and ocular in vivo studies. The ocular pharmacokinetics showed that NEB-LCNPs-ISG had two-fold higher aqueous humor exposure with AUC0–tlast of 375.4 ng × h/mL and sustained drug concentrations for longer durations (1.7-folds higher duration with a mean residence time of 10.6 h) in comparison to a conventional aqueous suspension of NEB (NEB-Susp). Similarly, the pharmacodynamic study showed that NEB-LCNPs-ISG resulted in a higher percentage reduction in intraocular pressure (% ΔIOP) of 28.1 ± 1.8% × h, which was 2.2-times higher reduction compared to NEB-Susp (74.2 ± 3.2% × h). In addition, the pharmacodynamic effect was more sustained with a mean response time of 11.3 ± 0.2 h, a 2.8-times higher response time compared to NEB-Susp (4.06 ± 0.3 h). These results suggest that NEB-LCNPs-ISG was more effective than the conventional aqueous suspension of NEB in the treatment of glaucoma.
Read full abstract