Matrix metalloproteinases (MMPs) are an important family of proteinases involved in various physiological processes and associated with the immune response. However, the role of MMPs in the immune response remains unclear. To explore the possible role of MMPs in innate immunity, this study selected the MMP-16 gene encoding peptidoglycan (PGN) binding domain identified in the sea cucumber Apostichopus japonicus (named AjMMP-16, GenBank accession No. AQT26486) for microbial polysaccharide-induced transcriptional expression analysis by quantitative real-time PCR, correlation analysis with nine representative genes from A. japonicus immune pathways in microbial polysaccharide-induced transcriptional expression by using Pearson's correlation test, and prokaryotic recombinant expression. Next, its recombinant protein was employed for microbial polysaccharide-binding analysis with ELISA and bacterial binding analysis with the indirect immunofluorescence method. The results showed that AjMMP-16 was significantly induced by diaminopimelic acid (DAP)-type PGN, lipopolysaccharide, mannan, and β-1,3-glucan and was closely correlated with myeloid differentiation factor 88 (MyD88) in microbial polysaccharide-induced transcriptional expression. In addition, recombinant AjMMP-16 bound to lysine-type PGN, DAP-type PGN, lipopolysaccharide, mannan, β-1,3-glucan, Vibrio splendidus, Pseudoalteromonas nigrifaciens, Shewanella baltica, Bacillus cereus, Escherichia coli, and Staphylococcus aureus. These results suggest that AjMMP-16 might act as a pattern recognition receptor in innate immunity and play an important role in initiating the MyD88-dependent Toll-like receptor signaling pathway.