The multienzyme complex in biological systems are highly ordered so that intermediate molecules occurred during enzymatic sequential reaction are efficiently delivered to downstream enzymes without diffused to bulk phase. Recently, the cascadic multienzymes have been adopted to enzymatic electrocatalytic platform to be applied for enzyme-based bioelectronics such as enzyme fuel cell, biosensors, and electrosynthetic system. This cascadic enzyme-electrode, in which interfacial electron transfer (ET) occurs concurrently with inter-enzyme chain reaction, has been regarded promising for the advancement of enzyme-based bioelectronics performance. However, co-regulation of interfacial electrical connection and inter-enzyme chain reaction efficiency has been known to be highly challenging due to systematic complexity. In this context, the generalized enzyme immobilization tool is significantly needed to be developed to control inter-enzyme and enzyme-electrode interface concurrently.Herein, enzyme cascade-based direct bioelectrocatalytic system has been constructed by immobilizing enzymes using the solid binding peptide (SBP) linker that can control surface-orientation of enzymes on electrode. Here, invertase (INV) and FAD-dependent glucose dehydrogenase gamma-alpha complex (GDHγα) were utilized as upstream- and downstream enzyme so that the sucrose hydrolysis (at INV) and glucose oxidation (at GDHγα) is concomitantly occurred. Especially, the GDHγα that is direct electron transfer (DET)-capable oxidoreductase, has bi-function that are downstream catalysis and transport of produced electrons toward electrode that cause bioelectrocatalytic current signal. To immobilize enzymes and control relative orientation of coupling enzymes, the SBP linker was tethered various termini (C-, N-, or both termini) of INV when SBP fusion site of GDHγα was fixed to C-terminus of GDH α subunit to enable efficient interfacial DET, based on previous study. Therefore, the inter-enzyme relative orientation dependent chain reaction efficiency was evaluated with resulting DET-based electrocatalytic current. In the result, it was found that the interfacial DET at GDHγα-electrode could be affected by binding conformation of co-immobilized enzyme, fusion INV. Most importantly, the chain reaction efficiency between INV and GDHγα was revealed to be diverse depending on different relative orientation determined by SBP tethering sites in enzymes. The intermediate delivery route was changed by relative positioning of coupling active sites, affecting overall cascade reaction rate. Taking into account the factors related with interfacial DET and intermediate delivery, precise design of bienzymatic electrode is indeed necessary in order to introduce SBP-tethering technique to cascadic enzyme-derived direct electrocatalytic platform. Figure 1
Read full abstract