The salt-induced peptide formation (SIPF) reaction is a prebiotically plausible mechanism for the spontaneous polymerization of amino acids into peptides on early Earth. Experimental investigations of the SIPF reaction have found that in certain conditions, the l enantiomer is more reactive than the d enantiomer, indicating its potential role in the rise of biohomochirality. Previous work hypothesized that the distortion of the CuCl active complex toward a tetrahedral-like structure increases the central chirality on the Cu ion, which amplifies the inherent parity-violating energy differences between l- and d-amino acid enantiomers, leading to stereoselectivity. Computational evaluations of this theory have been limited to the protonated-neutral l + l forms of the CuCl active complex. Here, density functional theory methods were used to compare the energies and geometries of the homochiral (l + l and d + d) and heterochiral (l + d) CuCl-amino acid complexes for both the positive-neutral and neutral-neutral forms for alanine, valine, and proline. Significant energy differences were not observed between different chiral active complexes (i.e., d + d, l + l vs. l + d), and the distortions of active complexes between stereoselective systems and non-selective systems were not consistent, indicating that the geometry of the active complex is not the primary driver of the observed stereoselectivity of the SIPF reaction.