Antimicrobial peptides are ubiquitous in multicellular organisms and have served as defense mechanisms for their successful evolution and throughout their life cycle. These peptides are short cationic amphiphilic polypeptides of fewer than 50 amino acids containing either a few disulfide-linked cysteine residues with a characteristic β-sheet-rich structure or linear α-helical conformations with hydrophilic side chains at one side of the helix and hydrophobic side chains on the other side. Antimicrobial peptides cause bacterial cell lysis either by direct cell-surface damage via electrostatic interactions between the cationic side chains of the peptide and the negatively charged cell surface, or by indirect modulation of the host defense systems. Electrostatic interactions lead to bacterial cell membrane disruption followed by leakage of cellular components and finally bacterial cell death. Because of their unusual mechanism of cell damage, antimicrobial peptides are effective against drug-resistant bacteria and may therefore prove more effective than classical antibiotics in certain cases. Currently, around 3000 natural antimicrobial peptides from six kingdoms (bacteria, archaea, protists, fungi, plants, and animals) have been isolated and sequenced. However, only a few of them are under clinical trials and/or in the commercial development stage for the treatment of bacterial infections caused by antibiotic-resistant bacteria. Moreover, high structural complexity, poor pharmacokinetic properties, and low antibacterial activity of natural antimicrobial peptides hinder their progress in drug development. To overcome these hurdles, researchers have become increasingly interested in modification and nature-inspired synthetic antimicrobial peptides. This review discusses some of the recent studies reported on antimicrobial peptides.