The surface area and the pentane isomerization activity of Pt/MoO3 were enlarged by H2 reduction. The enlargements was observed only when the reduction proceeded through the formation of hydrogen molybdenum bronze, HxMoO3. The catalytic activities of H2-reduced MoO3 with different noble metals for pentane isomerization and 2-propanol dehydration depended on the ability of noble metal to produce the HxMoO3 phases. H2-reduced Pt/MoO3 was more active for pentane isomerization than Pt/Hβ, and its activity was comparable to that of Pt/HZSM-5. In heptane isomerization, H2-reduced Pt/MoO3 exhibited a lower activity than Pt/Hβ, although heptane was isomerized very selectively. Strong adsorption of heptane onto H2-reduced Pt/MoO3 is likely to be a reason for its lower heptane isomerization activity.
Read full abstract