We analyze a gedanken experiment in which a spinning particle that also possesses an extrinsic orbital angular momentum is captured by a spinning Kerr black hole. The gravitational spin-orbit interaction decreases the energy of the particle, thus allowing one to test the validity of the Penrose weak cosmic censorship conjecture in extreme situations that have not been analyzed thus far. It is explicitly shown that, to leading order in the black-hole-particle interactions, the linearized test particle can over-spin the black hole, thus exposing its inner spacetime singularity to external observers. However, we prove that the general relativistic effect of dragging of inertial frames by the orbiting particle contributes to the energy budget of the system a non-linear black-hole-particle interaction term that ultimately ensures the validity of the Penrose cosmic censorship conjecture in this type of gedanken experiments.
Read full abstract