The contamination of food with Listeria monocytogenes threatens food safety and human health, and developing a novel, green, and safe antimicrobial substance will offer a new food preservation strategy. FengycinA-M3 is a novel lipid peptide with low cytotoxicity and resistance and has effective antibacterial activity against L. monocytogenes with a minimum inhibitory concentration (MIC) of 4 µg/mL. Further combined transcriptomics and proteomics analysis yielded 20 differentially expressed genes (DEGs). The MICs of the combined use of FengycinA-M3 and Cefalexin on L. monocytogenes were further determined as FengycinA-M3 (2 µg/mL) and Cefalexin (8 µg/mL) using the checkerboard method. In addition, FengycinA-M3 was found to play a role in delaying pork deterioration. This study explored the inhibitory effect of FengycinA-M3 on L. monocytogenes and its mechanism of action. FengycinA-M3 interacted with penicillin-binding protein 2B on the cell membrane of L. monocytogenes, destroying the permeability of the membrane, causing cell membrane rupture, thereby inhibiting the growth of L. monocytogenes. Overall, FengycinA-M3 is a promising candidate for preventing the emergence and spread of L. monocytogenes with potential applications in food processing.
Read full abstract